Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Docking Studies of a Novel Flavone–Chalcone Hybrid Compound Demonstrating Anticancer Effects by Generating ROS through Glutathione Depletion

Author:

Shin Soon YoungORCID,Jung Euitaek,Lim Yoongho,Lee Ha-Jin,Rhee Ji Hyun,Yoo Miri,Ahn SeunghyunORCID,Koh DongsooORCID

Abstract

The flavone–chalcone hybrid compound, (E)-6-bromo-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl)-4H-chromen-4-one (3), was synthesized and its three dimensional structure was identified by X-ray crystallography. The compound 3, C19H13BrO4, was crystallized in the triclinic space group P-1 with the following cell parameters: a = 8.2447(6) Å; b = 8.6032(6) Å; c = 11.7826(7) Å; α = 92.456(2)°; β = 91.541(2)°; γ = 106.138(2)°; V = 801.42(9) Å3 and Z = 2. In an asymmetric unit, two molecules are packed by a pi–pi stacking interaction between two flavone rings that are 3.790 Å apart from each other. In the crystal, two hydrogen bonds form inversion dimers and these dimers are extended along the a axis by another hydrogen bond. Hirshfeld analysis revealed that the H–H (34.3%), O–H (19.2%) and C–H (16.7%) intermolecular contacts are the major dominants, while the C–O (6.7%) and C–C (6.5%) are minor dominants. When HCT116 cells were treated with various concentrations of hybrid compound 3, reduced cell viability and induced apoptosis in HCT116 cells were observed in a dose-dependent manner. The treatment of HCT116 colon cancer cells with compound 3, decreased the intracellular glutathione (GSH) levels and generated a reactive oxygen species (ROS). In silico docking experiments between the compound 3 and glutathione S-transferase (GST) containing glutathione were performed to confirm whether the compound 3 binds to glutathione. Their binding energy ranged from −6.6 kcal/mol to −5.0 kcal/mol, and the sulfur of glutathione is very close to the Michael acceptor regions of the compound 3, so it is expected that they would easily react with each other. Compound 3 may be a promising novel anticancer agent by ROS generation through glutathione depletion.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3