The Effect of Scandium on the Microstructure of the Aluminium Alloy AA 6086

Author:

Žist Sandi,Steinacher Matej,Bončina Tonica,Albu MihaelaORCID,Burja JakaORCID,Vončina Maja,Zupanič FrancORCID

Abstract

The investigation studied the effects of 0.2 wt.% and 1 wt.% scandium (Sc) additions on the microstructure of the aluminium alloy AA 6086 in different conditions. The alloys were produced by casting into a metallic mould, followed by various heat treatments. The alloys were examined using light microscopy, scanning and transmission electron microscopy, microchemical analysis, differential scanning calorimetry and X-ray diffraction. The phase compositions and solidification sequences were modelled using the CALPHAD approach, which reasonably agreed with the experimental results. The addition of Sc to AA 6086 strongly reduced the grain size of the Al-rich solid solution and induced the appearance of Sc-rich phases AlSc2Si2 and L12-Al3X. Other phases identified in the Sc-free alloy were also found in the Sc-modified alloys. Homogenisation caused the dissolution of most phases and the formation of different types of dispersoids. In the alloy with 0.2% Sc, the distribution of dispersoids was not uniform. The plate-like AlMnCrSi dispersoids formed mainly at the dendrite centres, together with spherical L12 precipitates, while smaller α-AlMnSi and tetragonal t-Al3Zr dispersoids were created elsewhere. The addition of 0.2% Sc did not considerably affect the strengthening of AA 6086. The precipitation during isothermal ageing was slightly delayed and shifted to higher temperatures during continuous heating.

Funder

Slovenian Research Agency

European Union’s Horizon 2020 Research and Innovation Programme

Elettra Sincrotrone Trieste

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3