Investigating the Effect of Heat Treatment on the Microstructure and Hardness of Aluminum-Lithium Alloys

Author:

Radan Lida1,Songmene Victor1ORCID,Zedan Yasser1,Samuel Fawzy H.1

Affiliation:

1. Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada

Abstract

In this study, the effects of heat treatment on the microstructure and strength (micro-hardness) of an aluminum–lithium (Al-Li) base alloy containing copper (Cu) and scandium (Sc) were investigated, with a view to enhancing the alloy performance for aerospace applications. The heat treatment conditions were investigated to understand the precipitation behavior and the mechanisms involved in strengthening. Aging was carried out at temperatures of 130 °C and 150 °C for aging times of 1 h, 2.5 h, 5 h, 10 h, 15 h, 25 h, 35 h, and 45 h at each temperature for Al-Li alloy and at 160 °C, 180 °C, and 200 °C for aging times of 5 h, 10 h, 15 h, 20 h, 25 h, and 30 h at each temperature for Al-Li-Cu and Al-Li-Cu-Sc alloys. The investigation revealed that both solution heat treatment and artificial aging had a notable impact on strengthening the hardness of the alloy. This effect was attributed to the characteristics of the precipitates, including their type, size, number density, and distribution. The addition of copper (Cu) and scandium (Sc) was observed to have an impact on grain size refinement, while Cu addition specifically affected the precipitation behavior of the alloy. It led to remarkable changes in the number density, size, and distribution of T1 (Al2CuLi) and θ’ (Al2Cu) phases. As a result, the hardness of the alloy was significantly improved after the addition of Cu and Sc, in comparison with the base Al-Li alloy. The best heat treatment process was determined as: 580 °C/1 h solution treatment +150 °C/45 h artificial aging for Al-Li alloy and 505 °C/5 h solution treatment +180 °C/20 h artificial aging for Al-Li-Cu and Al-Li-Cu-Sc alloys.

Funder

NSERC

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3