Effect of Additional Dry Heat Curing on Microflexural Strength in Three Types of Resin Composite: An In Vitro Study

Author:

Zamalloa-Quintana Marlon,López-Gurreonero Carlos,Santander-Rengifo Flor Magaly,Ladera-Castañeda Marysela,Castro-Pérez Vargas Antonieta,Cornejo-Pinto Alberto,Cervantes-Ganoza LuisORCID,Cayo-Rojas CésarORCID

Abstract

Aim: Additional dry heat curing is a method that favorably influences the mechanical properties of an indirect resin composite restoration. Microflexural strength is a property currently applied for the evaluation of indirect resin composite restorations. The aim of the present study was to assess the effect of additional dry heat curing on microflexural strength in three types of direct-use resin composites. Materials and Methods: This in vitro study consisted of 70 resin composites samples made with a 6 × 2 × 1 mm metal matrix and divided into seven experimental groups, which included Gr1a: Tetric N-Ceram without additional dry heat curing (n = 10); Gr1b: Tetric N-Ceram with additional dry heat curing (n = 10); Gr 2a: Filtek Z350 XT without additional dry heat curing (n = 10); Gr2b: Filtek Z350 XT with additional dry heat curing (n = 10); Gr3a: Filtek Z250 without additional dry heat curing (n = 10); Gr3b: Filtek Z250 with additional dry heat curing (n = 10); and Gr4: SR Nexco Paste (control) without additional dry heat curing (n = 10). The samples were stored in distilled water at 37 °C for 24 h. A universal testing machine with a 2000 N load cell at a speed of 1 mm/min was used to assess flexural strength. The data were analyzed with a parametric ANOVA test with Tukey’s post hoc intergroup factor (for groups without heat treatment) and a nonparametric Kruskall Wallis test with Bonferroni’s post hoc (for groups with heat treatment). In addition, the comparison of independent groups in each resin composite type with and without heat treatment was performed with a Mann Whitney U test. A significance level of p < 0.05 was considered. Results: The Filtek Z250 resin composite with and without additional dry heat curing presented the highest microflexural strength values with 137.27 ± 24.43 MPa and 121.32 ± 9.74 MPa, respectively, while the SR Nexco Paste (control) resin composite presented the lowest microflexural strength values with 86.06 ± 14.34 MPa compared to all the resin composites with additional dry heat curing. The Filtek Z250 and Filtek Z350XT resin composites with and without additional dry heat curing presented significantly higher microflexural strength versus the SR Nexco (p < 0.05) and Tetric N-Ceram (p < 0.05) resin composites. In addition, the Filtek Z350XT and Tetric N-Ceram resin composites with additional dry heat curing showed significantly higher microflexural strength (p < 0.05) compared to those without additional dry heat curing. Conclusions: The Filtek Z250 and Z350XT resin composites had significantly higher microflexural strength values with and without additional dry heat curing. In addition, the Filtek Z350XT and Tetric N-Ceram resin composites subjected to additional dry heat curing showed significantly higher microflexural strength compared to when they did not receive the same procedure, a situation that did not occur with the Filtek Z250 resin composite.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3