Trueness, Flexural Strength, and Surface Properties of Various Three-Dimensional (3D) Printed Interim Restorative Materials after Accelerated Aging

Author:

Alageel Omar1,Alhijji Saleh1ORCID,Alsadon Omar1ORCID,Alsarani Majed1,Gomawi Abdurabu Abdullah2,Alhotan Abdulaziz1ORCID

Affiliation:

1. Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia

2. Dental University Hospital, King Saud University Medical City, Riyadh 11461, Saudi Arabia

Abstract

Various 3D printing systems for interim fixed dental restorations are commercially available. This study aimed to evaluate the physical and mechanical properties of 3D printed resins used for interim restorations fabricated using various 3D printing systems and printing angulations after accelerated aging. Three different interim restorative materials were provided and printed using their specific 3D printing systems (A: NextDent; B: Asiga; C: Nova3D), and the testing specimens from each system were printed at two building angles: (1) 0° and (2) 90°. The six groups were A1, A2, B1, B2, C1, and C2, with sixteen specimens per group. Half of the specimens in each group (N = 8) were subjected to accelerated aging, including simulated brushing and thermocycling. Three-point bending, surface roughness, and Vickers microhardness tests were performed. Two-way ANOVA and Fisher’s multiple tests were used for statistical analyses. The most accurate systems were found in groups C1 and C2 for length, A1 and B1 for width, and A1 and C1 for height. The specimen trueness only changed after aging for groups B1, B2, and C1. The flexural strength of the A2 group (151 ± 7 MPa) before aging was higher than that of the other groups, and the strength decreased after aging only for groups A1 and A2. The flexural strength, microhardness, and surface roughness of the 3D printed interim resins after aging varied depending on the material, system used, and printing angle.

Funder

Deanship for Deputyship for Research and Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3