Author:
Wang Deqi,Xu Guozhen,Tan Tianyu,Liu Shishuo,Dong Wei,Li Fengsheng,Liu Jie
Abstract
Aluminum (Al) has been widely used in micro-electromechanical systems (MEMS), polymer bonded explosives (PBXs) and solid propellants. Its typical core-shell structure (the inside active Al core and the external alumina (Al2O3) shell) determines its oxidation process, which is mainly influenced by oxidant diffusion, Al2O3 crystal transformation and melt-dispersion of the inside active Al. Consequently, the properties of Al can be controlled by changing these factors. Metastable intermixed composites (MICs), flake Al and nano Al can improve the properties of Al by increasing the diffusion efficiency of the oxidant. Fluorine, Titanium carbide (TiC), and alloy can crack the Al2O3 shell to improve the properties of Al. Furthermore, those materials with good thermal conductivity can increase the heat transferred to the internal active Al, which can also improve the reactivity of Al. Now, the integration of different modification methods is employed to further improve the properties of Al. With the ever-increasing demands on the performance of MEMS, PBXs and solid propellants, Al-based composite materials with high stability during storage and transportation, and high reactivity for usage will become a new research focus in the future.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献