Recent trends in nanothermites: Fabrication, characteristics and applications

Author:

Kabra Shruti,Gharde Swaroop,Gore Prakash M,Jain Sunil,Khire Vrushali H,Kandasubramanian BalasubramanianORCID

Abstract

Abstract Energetic materials (EMs) are a group of distinctive materials that release an enormous amount of amassed chemical energy in a short time when incited by external mechanical or thermal factors. They comprise of propellants, explosives, and pyrotechnics. Unlike conventional micro-energetic materials, nano energetic materials (nEMs), due to their smaller particle size ranging from 1–100 nm, exhibit higher specific surface area (~10–50 m2 g−1), reduced ignition temperatures from 2350 K to approx.1000 K for particle size from 100 μm to 100 nm respectively, higher energy densities (up to 50 MJ kg−1), burning rates ~30.48 mm s−1 at 6.894 kPa with specific impulses up to 542 s (5320 m s−1), low impact sensitivity (<4–35 J). Such exceptional properties of nano energetic composites, i.e., thermites (a combination of metal-fuel/metal oxide particles), find applications, namely in, munitions, pyrotechnics, energetic micro-electromechanical system (MEMS) chips. This review provides valuable insight into the synthesis methods of nano energetic composite systems (e.g., Al/CuO, Al/KMnO4, Al/Fe2O3, Al/SnO2, Silicon-based systems), their characteristic properties, behavior under certain conditions and applications. Furthermore, the review converses about the advancements made in the last few decades by many researchers, along with the technological gaps that need to be addressed for futuristic applications.

Publisher

IOP Publishing

Subject

General Medicine

Reference109 articles.

1. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications;Zhou;ACS Appl. Mater. Interfaces,2014

2. Design and synthesis of energetic materials;Fried;Annu. Rev. Mater. Res.,2001

3. A new paradigm for R&D to implement new energetic materials in munitions;Behrens,2007

4. Energetic materials, I: black powder, nitroglycerin, and dynamite;Anderson;MRS Bull.,1989

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3