Abstract
The crystal compound was synthesized and characterized using conventional analytical techniques. The compound C19H21O3 crystallizes in a monoclinic crystal system with the space group P21/c. The crystal structure is stabilized by C-H…O interactions. The structure is further reinforced by π-π interactions. During in vitro inhibition of α-glucosidase, the crystal compound exhibited a significant inhibition of the enzyme (IC50: 10.30 ± 0.25 µg/mL) in comparison with the control, acarbose (IC50: 12.00 ± 0.10 µg/mL). Molecular docking studies were carried out for the crystal compound with the α-glucosidase protein model, which demonstrated that the crystal molecule has a good binding affinity (−10.8 kcal/mol) compared with that of acarbose (−8.2 kcal/mol). The molecular dynamics simulations and binding free energy calculations depicted the stability of the crystal molecule throughout the simulation period (100 ns). Further, a Hirshfeld analysis was carried out in order to understand the packing pattern and intermolecular interactions. The energy difference between the frontier molecular orbitals (FMO) was 4.95 eV.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献