Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks

Author:

Yao Heming,Zhang YanmingORCID,Jiang Lijun,Ewe Hong,Ng Michael

Abstract

This paper proposes a novel inverse method based on the deep convolutional neural network (ConvNet) to extract snow’s layer thickness and temperature via passive microwave remote sensing (PMRS). The proposed ConvNet is trained using simulated data obtained through conventional computational electromagnetic methods. Compared with the traditional inverse method, the trained ConvNet can predict the result with higher accuracy. Besides, the proposed method has a strong tolerance for noise. The proposed ConvNet composes three pairs of convolutional and activation layers with one additional fully connected layer to realize regression, i.e., the inversion of snow parameters. The feasibility of the proposed method in learning the inversion of snow parameters is validated by numerical examples. The inversion results indicate that the correlation coefficient (R2) ratio between the proposed ConvNet and conventional methods reaches 4.8, while the ratio for the root mean square error (RMSE) is only 0.18. Hence, the proposed method experiments with a novel path to improve the inversion of passive microwave remote sensing through deep learning approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3