EM Scattering of A Target above Canyon/Valley Environment Based on Composite Rough Surface Modeling Method and Modified SBR-FBSSA Algorithm

Author:

Wang Yijin1ORCID,Tong Chuangming1,Wang Tong1,Li Ximin2,Wang Qingkuan1,Wang Zhaolong1

Affiliation:

1. Air Defense and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

2. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

Abstract

The composite electromagnetic (EM) scattering characteristics from a target above a canyon/valley environment are significant. Aiming to acquire the composite EM scattering efficiently and accurately, the framework of the canyon/valley environment modeling method and modified shooting and bouncing rays (SBR) hybrid with facet-based small slope approximation (FBSSA) algorithm is investigated. Firstly, the canyon/valley environment containing two slopes and a bottom modeling method is proposed. Then, considering the environment’s roughness, the modified SBR algorithm introduced by the high-order reflection model is proposed. Combined with the FBSSA, the modified SBR-FBSSA algorithm is an efficient and accurate method to predict composite EM scattering based on numerical verification. Finally, the effects of different surface types, roughness, slope angles, and incident-pitch and azimuth angles on the composite EM scattering characteristics are further analyzed. The work presented in this article provides a way to study the composite EM scattering from a target above the canyon/valley environment. Meanwhile, the complex scattering mechanism is revealed, and some valuable conclusions are put forward based on the physical phenomena.

Funder

National Natural Science Founding of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An IGFBM-SAA Fast Algorithm for Solving Electromagnetic Scattering from Layered Media Rough Surfaces;The Applied Computational Electromagnetics Society Journal (ACES);2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3