Study of Tribological Properties of Fullerenol and Nanodiamonds as Additives in Water-Based Lubricants for Amorphous Carbon (a-C) Coatings

Author:

Chen Shuqing,Ding Qi,Gu Yan,Quan Xin,Ma Ying,Jia Yulong,Xie Hongmei,Tang JinzhuORCID

Abstract

The tribological performances of fullerenol and nanodiamonds (NDs) as additives in water-based lubricants for amorphous carbon (a-C) coatings are investigated to avoid disadvantage factors, such as chemical reactions and deformation of particles. The effects of size and additive amount on tribological properties of nanoparticles are studied by rigid nanoparticles within the dot size range. The results show that owing to its small particle size (1–2 nm), fullerenol cannot prevent direct contact of the friction pair at low concentration conditions. Only when the quantity of fullerenol increased to support the asperity contact loads in sufficient concentration did nano-bearings perform well in anti-friction and anti-wear effects. Unlike fullerenol, nanodiamond particles with a diameter of about 5–10 nm show friction-reducing effect based on the nano-bearing effects at ultra-low concentration (0.01 wt.%), whereas particles at higher concentration block the rolling movement, hence increasing the coefficient of friction (COF) and wear. As a result of the effect of difference in size, fullerenol provides a better overall lubrication, but it is hard to reach a friction coefficient as low as NDs even under the optimal conditions.

Funder

Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3