Machine Learning-Based Species Classification Methods Using DART-TOF-MS Data for Five Coniferous Wood Species

Author:

Park GeonhaORCID,Lee Yun-GyoORCID,Yoon Ye-Seul,Ahn Ji-YoungORCID,Lee Jei-WanORCID,Jang Young-PyoORCID

Abstract

Various problems worldwide are caused by illegal production and distribution of timber, such as deception about timber species and origin and illegal logging. Numerous studies on wood tracking are being conducted around the world to demonstrate the legitimacy of timber. Tree species identification is the most basic element of wood tracking research because the quality of wood varies greatly from species to species and is consistent with the botanical origin of commercially distributed wood. Although many recent studies have combined machine learning-based classification methods with various analytical methods to identify tree species, it is unclear which classification model is most effective. The purpose of this work is to examine and compare the performance of three supervised machine learning classification models, support vector machine (SVM), random forest (RF), and artificial neural network (ANN), in identifying five conifer species and propose an optimal model. Using direct analysis in real-time ionization combined with time-of-flight mass spectrometry (DART-TOF-MS), metabolic fingerprints of 250 individual specimens representing five species were collected three times. When the machine learning models were applied to classify the wood species, ANN outperformed SVM and RF. All three models showed 100% prediction accuracy for genus classification. For species classification, the ANN model had the highest prediction accuracy of 98.22%. The RF model had an accuracy of 94.22%, and the SVM had the lowest accuracy of 92.89%. These findings demonstrate the practicality of authenticating wood species by combining DART-TOF-MS with machine learning, and they indicate that ANN is the best model for wood species identification.

Funder

National Institute of Forest Science, Korea in 2021

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

1. Socio-economic, environmental, and governance impacts of illegal logging

2. Forensic timber identification: It's time to integrate disciplines to combat illegal logging

3. General sampling guide for timber tracking: How to collect reference samples for timber identification. General sampling guide for timber tracking: How to collect reference samples for timber identification;Schmitz;Glob. Timber Track. Netw. GTTN Secr. Eur. For. Inst. Thuenen Inst.,2019

4. Overview of current practices in data analysis for wood identification. A guide for the different timber tracking methods;Schmitz;Glob. Timber Track. Netw. GTTN Secr. Eur. For. Inst. Thuenen Inst.,2020

5. A Discussion of Wood Quality Attributes and Their Practical Implications;Jozsa,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3