Deepening the Accuracy of Tree Species Classification: A Deep Learning-Based Methodology

Author:

Cha Sungeun1ORCID,Lim Joongbin1ORCID,Kim Kyoungmin1ORCID,Yim Jongsu1ORCID,Lee Woo-Kyun2ORCID

Affiliation:

1. Forest ICT Research Center, National Institute of Forest Science, Seoul 02455, Republic of Korea

2. Department of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

The utilization of multi-temporally integrated imageries, combined with advanced techniques such as convolutional neural networks (CNNs), has shown significant potential in enhancing the accuracy and efficiency of tree species classification models. In this study, we explore the application of CNNs for tree species classification using multi-temporally integrated imageries. By leveraging the temporal variations captured in the imageries, our goal is to improve the classification models’ discriminative power and overall performance. The results of our study reveal a notable improvement in classification accuracy compared to previous approaches. Specifically, when compared to the random forest model’s classification accuracy of 84.5% in the Gwangneung region, our CNN-based model achieved a higher accuracy of 90.5%, demonstrating a 6% improvement. Furthermore, by extending the same model to the Chuncheon region, we observed a further enhancement in accuracy, reaching 92.1%. While additional validation is necessary, these findings suggest that the proposed model can be applied beyond a single region, demonstrating its potential for a broader applicability. Our experimental results confirm the effectiveness of the deep learning approach in achieving a high accuracy in tree species classification. The integration of multi-temporally integrated imageries with a deep learning algorithm presents a promising avenue for advancing tree species classification, contributing to improved forest management, conservation, and monitoring in the context of a climate change.

Funder

National Institute of Forest Science

Publisher

MDPI AG

Subject

Forestry

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3