The Influence of Thermal Parameters on the Self-Nucleation Behavior of Polyphenylene Sulfide (PPS) during Secondary Thermoforming

Author:

Ren Yi12,Li Zhouyang1,Li Xinguo12,Su Jiayu12,Li Yue3,Gao Yu12,Zhou Jianfeng1,Ji Chengchang12,Zhu Shu12ORCID,Yu Muhuo12

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China

2. Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

3. School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 201306, China

Abstract

During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This behavior not only affects its crystallization but also impacts the processing and mechanical properties of PPS and CF/PPS composites. In this article, the effects of various parameters on the SN and non-isothermal crystallization behavior of PPS during two thermal cycles were systematically investigated by differential scanning calorimetry. It was found that the SN behavior was not affected by the cooling rate in the second thermal cycle. Furthermore, the lamellar annealing resulting from the heating process in both thermal cycles affected the temperature range for forming the special SN domain, because of the refined lamellar structure, and expelled various defects. Finally, this study indicated that to control the strong melt memory effect in the first thermal cycle, both the heating rate and processing melt temperature need to be controlled simultaneously. This work reveals that through collaborative control of these parameters, the crystalline morphology, crystallization temperature and crystallization rate in two thermal cycles are controlled. Furthermore, it presents a new perspective for controlling the crystallization behavior of the thermoplastic composite matrix during the secondary thermoforming process.

Funder

National Natural Science Foundation of China

Jiangsu New Horizon Advanced Functional Fiber Innovation Center Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3