Investigation of earing defect and thickness distribution in stamp forming of continuous glass fiber reinforced polypropylene composite laminates

Author:

Özdemir A Onur1ORCID,Karatas Cetin2ORCID,Kocak Harun3ORCID,Demiral Murat4

Affiliation:

1. Department of Automotive Engineering, Faculty of Technology, Gazi University, Ankara, Turkey

2. Department of Manufacturing Engineering, Faculty of Technology, Gazi University, Ankara, Turkey

3. Department of Aircraft Technology, TUSAŞ-Kazan Vocational School, Gazi University, Ankara, Turkey

4. College of Engineering and Technology, American University of the Middle East, Kuwait

Abstract

When lightweighting studies are examined, thermoplastic matrix composites come to the fore as they have a high specific strength, are recyclable, and can be formed by thermoforming. Some obscurity needs to be overcome for the rapid forming of three-dimensional parts from laminated thermoplastic composites. In this study, deep drawing experiments were carried out to investigate the forming capabilities of continuous glass fiber reinforced polypropylene composite laminates. The parameters of drawing depth, laminate temperature, holding pressure, and punch speed were examined at each three different levels. The effects of these parameters were evaluated on the earing defect and the thickness distribution. It was concluded that the laminate temperature affected both deformations the most. It was determined that all parameters caused a change in flange diameter, but the amount of earing increased with the increase of drawing depth. It was established that inhomogeneous thickness distributions occurred in the part and the highest thickening took place in the curve region.

Funder

Gazi Üniversitesi

TÜBİTAK

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3