A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data

Author:

Deigele Wolfgang,Brandmeier MelanieORCID,Straub Christoph

Abstract

Forest damage due to storms causes economic loss and requires a fast response to prevent further damage such as bark beetle infestations. By using Convolutional Neural Networks (CNNs) in conjunction with a GIS, we aim at completely streamlining the detection and mapping process for forest agencies. We developed and tested different CNNs for rapid windthrow detection based on PlanetScope satellite data and high-resolution aerial image data. Depending on the meteorological situation after the storm, PlanetScope data might be rapidly available due to its high temporal resolution, while the acquisition of high-resolution airborne data often takes weeks to a month and is, therefore, used in a second step for more detailed mapping. The study area is located in Bavaria, Germany (ca. 165 km2), and labels for damaged areas were provided by the Bavarian State Institute of Forestry (LWF). Modifications of a U-Net architecture were compared to other approaches using transfer learning (e.g., VGG19) to find the most efficient architecture for the task on both datasets while keeping the computational time low. A custom implementation of U-Net proved to be more accurate than transfer learning, especially on medium (3 m) resolution PlanetScope imagery (intersection over union score (IoU) 0.55) where transfer learning completely failed. Results for transfer learning based on VGG19 on high-resolution aerial image data are comparable to results from the custom U-Net architecture (IoU 0.76 vs. 0.73). When using both architectures on a dataset from a different area (located in Hesse, Germany), however, we find that the custom implementations have problems generalizing on aerial image data while VGG19 still detects most damage in these images. For PlanetScope data, VGG19 again fails while U-Net achieves reasonable mappings. Results highlight the potential of Deep Learning algorithms to detect damaged areas with an IoU of 0.73 on airborne data and 0.55 on Planet Dove data. The proposed workflow with complete integration into ArcGIS is well-suited for rapid first assessments after a storm event that allows for better planning of the flight campaign followed by detailed mapping in a second stage.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference25 articles.

1. Annual Report 2017,2018

2. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images

3. Pattern Classification;Duda,2001

4. Landsat TM-based forest damage assessment: Correction for topographic effects;Ekstrand;Photogramm. Eng. Remote Sens.,1996

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3