Structures and Biologic Activity of Chitonoidosides I, J, K, K1 and L-Triterpene Di-, Tri- and Tetrasulfated Hexaosides from the Sea Cucumber Psolus chitonoides

Author:

Silchenko Alexandra S.,Avilov Sergey A.,Andrijaschenko Pelageya V.,Popov Roman S.ORCID,Chingizova Ekaterina A.,Dmitrenok Pavel S.ORCID,Kalinovsky Anatoly I.,Rasin Anton B.,Kalinin Vladimir I.

Abstract

Five new triterpene di-, tri- and tetrasulfated hexaosides (chitonoidosides I (1), J (2), K (3), K1 (4) and L (5)) were isolated from the Far-Eastern sea cucumber Psolus chitonoides, collected near Bering Island (Commander Islands) from a depth of 100–150 m. The structural variability of the glycosides concerned both the aglycones (with 7(8)- or 9(11)-double bonds) and carbohydrate chains differing from each other by the third sugar residue (Xyl or sulfated by C-6 Glc) and/or by the fourth—terminal in the bottom semi-chain—residue (Glc or sulfated by C-6 MeGlc) as well as by the positions of a sulfate group at C-4 or C-6 in the sixth—terminal in the upper semi-chain—residue (MeGlc). Hemolytic activities of these compounds 1–5 against human erythrocytes as well as cytotoxicity against human cancer cell lines, HeLa, DLD-1 and HL-60, were studied. The hexaosides, chitonoidosides K (3) and L (5) with four sulfate groups, were the most active against tumor cells in all the tests. Noticeably, the sulfate group at C-4 of MeGlc6 did not decrease the membranolytic effect of 5 as compared with 3, having the sulfate group at C-6 of MeGlc6. Erythrocytes were, as usual, more sensitive to the action of the studied glycosides than cancer cells, although the sensitivity of leukemia promyeloblast HL-60 cells was higher than that of other tumor cells. The glycosides 1 and 2 demonstrated some weaker action in relation to DLD-1 cells than against other tumor cell lines. Chitonoidoside K1 (4) with a hydroxyl at C 25 of the aglycone was not active in all the tests. The metabolic network formed by the carbohydrate chains of all the glycosides isolated from P. chitonoides as well as the aglycones biosynthetic transformations during their biosynthesis are discussed and illustrated with schemes.

Funder

Ministry of Science and Education, Russian Federation

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3