Djakonoviosides A, A1, A2, B1–B4 — Triterpene Monosulfated Tetra- and Pentaosides from the Sea Cucumber Cucumaria djakonovi: The First Finding of a Hemiketal Fragment in the Aglycones; Activity against Human Breast Cancer Cell Lines

Author:

Silchenko Alexandra S.1ORCID,Kalinovsky Anatoly I.1,Avilov Sergey A.1,Popov Roman S.1ORCID,Dmitrenok Pavel S.1ORCID,Chingizova Ekaterina A.1,Menchinskaya Ekaterina S.1,Panina Elena G.2,Stepanov Vadim G.2,Kalinin Vladimir I.1ORCID,Stonik Valentin A.1

Affiliation:

1. G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia

2. Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia

Abstract

Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1–B4 (4–7), along with three known glycosides found earlier in the other Cucumaria species, namely okhotoside A1-1, cucumarioside A0-1, and frondoside D, have been isolated from the far eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida). The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds of groups A and B differ from each other in their carbohydrate chains, namely monosulfated tetrasaccharide chains are inherent to group A and pentasaccharide chains with one sulfate group, branched by C-2 Qui2, are characteristic of group B. The aglycones of djakonoviosides A2 (3), B2 (5), and B4 (7) are characterized by a unique structural feature, a 23,16-hemiketal fragment found first in the sea cucumbers’ glycosides. The biosynthetic pathway of its formation is discussed. The set of aglycones of C. djakonovi glycosides was species specific because of the presence of new aglycones. At the same time, the finding in C. djakonovi of the known glycosides isolated earlier from the other species of Cucumaria, as well as the set of carbohydrate chains characteristic of the glycosides of all investigated representatives of the genus Cucumaria, demonstrated the significance of these glycosides as chemotaxonomic markers. The membranolytic actions of compounds 1–7 and known glycosides okhotoside A1-1, cucumarioside A0-1, and frondoside D, isolated from C. djakonovi against human cell lines, including erythrocytes and breast cancer cells (MCF-7, T-47D, and triple negative MDA-MB-231), as well as leukemia HL-60 and the embryonic kidney HEK-293 cell line, have been studied. Okhotoside A1-1 was the most active compound from the series because of the presence of a tetrasaccharide linear chain and holostane aglycone with a 7(8)-double bond and 16β-O-acetoxy group, cucumarioside A0-1, having the same aglycone, was slightly less active because of the presence of branching xylose residue at C-2 Qui2. Generally, the activity of the djakonoviosides of group A was higher than that of the djakonoviosides of group B containing the same aglycones, indicating the significance of a linear chain containing four monosaccharide residues for the demonstration of membranolytic action by the glycosides. All the compounds containing hemiketal fragments, djakonovioside A2 (3), B2 (5), and B4 (7), were almost inactive. The most aggressive triple-negative MDA-MB-231 breast cancer cell line was the most sensitive to the glycosides action when compared with the other cancer cells. Okhotoside A1-1 and cucumarioside A0-1 demonstrated promising effects against MDA-MB-231 cells, significantly inhibiting the migration, as well as the formation and growth, of colonies.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3