Impact of Phytase Supplementation on Meat Quality of Heat-Stressed Broilers

Author:

Maynard Clay J.1ORCID,Maynard Craig W.12,Mullenix Garrett J.1,Ramser Alison1,Greene Elizabeth S.1,Bedford Mike R.3,Dridi Sami1ORCID

Affiliation:

1. Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA

2. Bell & Evans, Fredericksburg, PA 17026, USA

3. AB Vista, Marlborough SN8 4AN, UK

Abstract

Heat stress (HS) is one of the most challenging stressors to poultry production sustainability. The adverse effects of HS range from feed intake and growth depression to alteration of meat quality and safety. As phytase supplementation is known to improve nutrient utilization and consequently growth, we undertook the present study to evaluate the effects of dietary phytase on growth and meat quality in heat-stressed broilers. A total of 720 day-old hatch Cobb 500 chicks were assigned to 24 pens within controlled environmental chambers and fed three diets: Negative Control (NC), Positive Control (PC), and NC diet supplemented with 2000 phytase units (FTU)/kg) of quantum blue (QB). On day 29, birds were exposed to two environmental conditions: thermoneutral (TN, 25 °C) or cyclic heat stress (HS, 35 °C, 8 h/d from 9 a.m. to 5 p.m.) in a 3 × 2 factorial design. Feed intake (FI), water consumption (WI), body weight (BW), and mortality were recorded. On day 42, birds were processed, carcass parts were weighed, and meat quality was assessed. Breast tissues were collected for determining the expression of target genes by real-time quantitative PCR using the 2−ΔΔCt method. HS significantly increased core body temperature, reduced feed intake and BW, increased water intake (WI), elevated blood parameters (pH, SO2, and iCa), and decreased blood pCO2. HS reduced the incidence of woody breast (WB) and white striping (WS), significantly decreased drip loss, and increased both 4- and 24-h postmortem pH. Instrumental L* and b* values were reduced (p < 0.05) by the environmental temperature at both 4- and 24-h postmortem. QB supplementation reduced birds’ core body temperature induced by HS and improved the FCR and water conversion ratio (WCR) by 1- and 0.5-point, respectively, compared to PC under HS. QB increased blood SO2 and reduced the severity of WB and WS under TN conditions, but it increased it under an HS environment. The abovementioned effects were probably mediated through the modulation of monocarboxylate transporter 1, heat shock protein 70, mitogen-activated protein kinase, and/or glutathione peroxidase 1 gene expression, however, further mechanistic studies are warranted. In summary, QB supplementation improved growth performance and reduced muscle myopathy incidence under TN conditions. Under HS conditions, however, QB improved growth performance but increased the incidence of muscle myopathies. Therefore, further QB titration studies are needed.

Funder

Animal Health Awards

University of Arkansas, Division of Agriculture Research & Extension

AB Vista, United Kingdom

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3