Carbon Functionalized Material Derived from Byproduct of Plasma Tar-Cracking Unit on Biomass Gasifier Collected Using Standard Impinger Method

Author:

Soedarsono Harry Poetra,Faizal FerryORCID,Panatarani Camellia,Joni I MadeORCID

Abstract

Reduction of tar concentration in biomass gasification with secondary plasma tar cracking unit remains a challenge to meet the requirement for clean syngas energy applications. Typically, the post-treatment of syngas to reduce the tar from an updraft fixed-bed reactor is using secondary plasma tar cracking unit. In this study, an additional trapping train was introduced as a mechanism to harvest byproducts of the tar decomposition process (byproduct carbon functionalized material or BCFM). The measurement in gravimetric and particle size distribution, supported by photoluminescent (PL) and Fourier transform infrared spectroscopy (FT–IR) of BCFM, were conducted to reveal the BCFM characteristic. The gravimetric analysis showed that the application of the secondary plasma tar cracking unit highly reduced the tar concentration. Similarly, the average particle size also decreased significantly. The peak emission spectra of the suspended BCFM particle under the plasma cracking treatment shifted from around 500 nm to around 400 nm. The significant changes in the BCFM functional group occurred due to the successful cracking process. It was concluded that the byproduct received from the plasma cracking process resulted in very low tar content and was revealed to be a carbon functionalized material with a very small size (16.2 nm) and stable suspension.

Funder

Academic Leadership Grant

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3