Affiliation:
1. Blacksea Advanced Technology Research and Application Centre (KITAM), Ondokuz Mayis University, Samsun 55139, Türkiye
2. Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106-7217, USA
3. School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
Abstract
This multi-disciplinary paper aims to provide a roadmap for the development of an integrated, process-intensified technology for the production of H2, NH3 and NH3-based symbiotic/smart fertilizers (referred to as target products) from renewable feedstock with CO2 sequestration and utilization while addressing environmental issues relating to the emerging Food, Energy and Water shortages as a result of global warming. The paper also discloses several novel processes, reactors and catalysts. In addition to the process intensification character of the processes used and reactors designed in this study, they also deliver novel or superior products so as to lower both capital and processing costs. The critical elements of the proposed technology in the sustainable production of the target products are examined under three-sections: (1) Materials: They include natural or synthetic porous water absorbents for NH3 sequestration and symbiotic and smart fertilizers (S-fertilizers), synthesis of plasma interactive supported catalysts including supported piezoelectric catalysts, supported high-entropy catalysts, plasma generating-chemical looping and natural catalysts and catalysts based on quantum effects in plasma. Their performance in NH3 synthesis and CO2 conversion to CO as well as the direct conversion of syngas to NH3 and NH3—fertilizers are evaluated, and their mechanisms investigated. The plasma-generating chemical-looping catalysts (Catalysts, 2020, 10, 152; and 2016, 6, 80) were further modified to obtain a highly active piezoelectric catalyst with high levels of chemical and morphological heterogeneity. In particular, the mechanism of structure formation in the catalysts BaTi1−rMrO3−x−y{#}xNz and M3O4−x−y{#}xNz/Si = X was studied. Here, z = 2y/3, {#} represents an oxygen vacancy and M is a transition metal catalyst. (2) Intensified processes: They include, multi-oxidant (air, oxygen, CO2 and water) fueled catalytic biomass/waste gasification for the generation of hydrogen-enriched syngas (H2, CO, CO2, CH4, N2); plasma enhanced syngas cleaning with ca. 99% tar removal; direct syngas-to-NH3 based fertilizer conversion using catalytic plasma with CO2 sequestration and microwave energized packed bed flow reactors with in situ reactive separation; CO2 conversion to CO with BaTiO3−x{#}x or biochar to achieve in situ O2 sequestration leading to higher CO2 conversion, biochar upgrading for agricultural applications; NH3 sequestration with CO2 and urea synthesis. (3) Reactors: Several patented process-intensified novel reactors were described and utilized. They are all based on the Multi-Reaction Zone Reactor (M-RZR) concept and include, a multi-oxidant gasifier, syngas cleaning reactor, NH3 and fertilizer production reactors with in situ NH3 sequestration with mineral acids or CO2. The approach adopted for the design of the critical reactors is to use the critical materials (including natural catalysts and soil additives) in order to enhance intensified H2 and NH3 production. Ultimately, they become an essential part of the S-fertilizer system, providing efficient fertilizer use and enhanced crop yield, especially under water and nutrient stress. These critical processes and reactors are based on a process intensification philosophy where critical materials are utilized in the acceleration of the reactions including NH3 production and carbon dioxide reduction. When compared with the current NH3 production technology (Haber–Bosch process), the proposed technology achieves higher ammonia conversion at much lower temperatures and atmospheric pressure while eliminating the costly NH3 separation process through in situ reactive separation, which results in the production of S-fertilizers or H2 or urea precursor (ammonium carbamate). As such, the cost of NH3-based S-fertilizers can become competitive with small-scale distributed production platforms compared with the Haber–Bosch fertilizers.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Reference414 articles.
1. Agricultural sustainability and intensive production practices;Tilman;Nature,2002
2. Bioprocess and chemical process intensification;Lee;Encyclopaedia of Chemicals Processing,2006
3. Sustainable ammonia and advanced symbiotic fertilizer production using catalytic multi-reaction-zone reactors with nonthermal plasma and simultaneous reactive separation;Akay;ACS Sustain. Chem. Eng.,2017
4. AgroProcess intensification through synthetic rhizosphere media for nitrogen fixation and yield enhancement;Akay;Am. J. Agric. Biol. Sci.,2012
5. AgroProcess Intensification: Microbioreactors as soil additives with nitrogen fixing bacterium Azospirillum brasilense to enhance its potential as self-sustaining biofertiliser;Akay;Green Process. Synth.,2012