Optimization of Synthesis of Silver Nanoparticles Conjugated with Lepechinia meyenii (Salvia) Using Plackett-Burman Design and Response Surface Methodology—Preliminary Antibacterial Activity

Author:

Laime-Oviedo Luis Alberto,Soncco-Ccahui Amanda Allison,Peralta-Alarcon Gladis,Arenas-Chávez Carlos Alberto,Pineda-Tapia Jose Luis,Díaz-Rosado José CarlosORCID,Alvarez-Risco AldoORCID,Del-Aguila-Arcentales Shyla,Davies Neal M.ORCID,Yáñez Jaime A.ORCID,Vera-Gonzales Corina

Abstract

In the present investigation, an ethanolic fraction (EF) of Lepechinia meyenii (salvia) was prepared and fractionated by gradient column chromatography, and the main secondary metabolites present in the EF were identified by HPLC-MS. Silver nanoparticles (AgNPs) were synthesized and conjugated with the EF of Lepechinia meyenii (salvia). The AgNPs synthesis was optimized using Plackett-Burman design and response surface methodology (RSM), considering the following independent variables: stirring speed, synthesis pH, synthesis time, synthesis temperature and EF volume. The AgNPs synthesized under the optimized conditions were characterized by UV visible spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). The antibacterial activity of the AgNPs against Staphylococcus aureus (ATCC® 25923) was evaluated. The following flavonoids were identified: rosmarinic acid, diosmin and hesperetin-7-O-rutinoside. The optimized conditions for the synthesis of nanoparticles were pH 9.45, temperature 49.8 °C, volume of ethanolic fraction 152.6 µL and a reaction time of 213.2 min. The obtained AgNPs exhibited an average size of 43.71 nm and a resonance plasmon of 410–420 nm. Using FT-IR spectroscopy, the disappearance of the peaks between 626.50 and 1379.54 cm−1 was evident with the AgNPs, which would indicate the participation of these functional groups in the synthesis and protection of the nanoparticles. A hydrodynamic size of 47.6 nm was obtained by DLS, while a size of 40–60 nm was determined by STEM. The synthesized AgNPs conjugated with the EF showed a higher antibacterial activity than the EF alone. These results demonstrate that the AgNPs synthesized under optimized conditions conjugated with the EF of the Lepechinia meyenii (salvia) presented an increased antibacterial activity.

Funder

Prociencia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3