Research and Performance Evaluation on Selective Absorption of H2S from Gas Mixtures by Using Secondary Alkanolamines

Author:

Xue JingwenORCID,Yang Chaoyue,Fu Jingqiang,He Jinlong,Li Jinjin

Abstract

Exploring new solvents for efficient acid gas removal is one of the most attractive topics in industrial gas purification. Herein, using 2-tertiarybutylamino-2-ethoxyethanol as an absorbent in a packed column at atmospheric pressure was examined for selective absorption of H2S from mixed gas streams. In the present work, the acid gas load, H2S absorption selectivity, acid gas removal ratio, amine solution regeneration performance, and corrosion performance were investigated through evaluating experiments absorbing H2S and CO2 by using methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol. The experimental results illustrate that the H2S absorption selective factors were 3.88 and 15.81 by using 40% methyldiethanolamine and 40% 2-tertiarybutylamino-2-ethoxyethanol at 40 °C, respectively, showing that 2-tertiarybutylamino-2-ethoxyethanol is an efficient solvent for selective H2S removal, even better than methyldiethanolamine. Based on the consideration of cost, we added 5% TBEE to 35% MDEA to form a blended aqueous solvent. To our satisfaction, the blended amine solvent obtained a 99.79% H2S removal rate and a 22.68% CO2 co-absorption rate, while using the methyldiethanolamine alone achieved a 98.33% H2S removal rate and a 23.52% CO2 co-absorption rate; the blended solvent showed better H2S absorption efficiency and selectivity. Taken together, this work provides valuable information for a promising alkanolamine for acid gas removal, and the preliminary study has found that the aqueous blend of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol is an efficient solvent for selective H2S removal, which not only extends the application field for sterically hindered amines, but also opens up new opportunities in blended solvent design.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3