Effect of higher H2S concentration over CO2 in acid gas mixtures during geosequestration

Author:

Ofori Kofi,Barifcani Ahmed,Phan Chi M.

Abstract

AbstractDecarbonisation of most industrial processes is imperative to achieve climate neutrality. In oil and gas, carbon dioxide (CO2) and natural gas are being discovered together with increasingly higher quantities of hydrogen sulphide (H2S). The negative effects of acid gases (predominantly CO2 and H2S) in that industry mean they have to be separated before both natural gas and petroleum fuels can be classified as safe for transportation and usage. The separated acid gas, usually composed of a higher CO2 volume is stored and utilised in enhanced oil recovery (EOR) or geologically stored (geosequestered) in formations. There are increasingly instances in which higher volume of H2S acid gas mixtures are being discovered and explored. In this work, the effects of a higher mole percentage H2S in an acid gas mixture is investigated using molecular dynamics simulations. The analysis found that it was easier for higher CO2 acid mixtures to reach pressure convergence comparatively. It has also been discovered that higher H2S acid gas mixtures had lower interfacial tension, which makes them more hydrophilic and more miscible with the formation water. The higher H2S acid gas content mixtures also have wider water coverage widths and greater interfacial interactivity between the injected and formation fluids. From the density profiles, H2S gas in the higher H2S acid gas mixture is found to have more influence on the higher H2S acid gas/water injection/sequestration process compared to the effect of CO2 on the higher CO2 acid gas mixture/water. While H2S is slightly more polar than the nonpolar CO2, the carbon of CO2’s ability to form strong dipole–dipole interactions with the oxygen of water increases the CO2's polarity, and this is reflected in the assertion of the primacy of the $${\text{O}}_{{{\text{H}}_{{2}} {\text{O}}}} \cdots {\text{C}}_{{{\text{CO}}_{{2}} }}$$ O H 2 O C CO 2 interaction over all other pairs from the radial distribution function in the water/acid gas mixture during geosequestration. This demonstrates also that a reduction in interfacial tension is possible even for hydrophobic phases.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3