Abstract
Biomass waste from harvestable output is produced in significant quantities by agricultural and forestry processes and can have detrimental effects on the ecosystem. Therefore, biomass derived from the waste in the environment has been recognized as a potential source for preparing functional materials in recent years. In this study, activated carbon (ACs) was fabricated and characterized from Phyllostachys edulis (Moso bamboo) using single-step potassium hydroxide (KOH) activation at different temperatures (500 °C to 1000 °C). The prepared ACs were characterized for surface morphology, surface area, functional groups and crystallinity using scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, Fourier transform infrared (FTIR) and X-ray diffraction (XRD), respectively. The SEM revealed well-formed pores on the surface of all ACs, while BET analysis revealed the presence of microporous (≤800 °C) and mesoporous (>800 °C) structures. SBET surface area and total pore volume increased with increasing activation temperature, from 434 to 1790 m2/g and 0.2089 to 0.8801 cm3/g, reaching a maximum at 900 °C. FTIR revealed the presence of carbonyl and hydroxyl groups on the surface. XRD showed a dominant amorphous structure and a low crystallization degree in all ACs.
Funder
Special Funds for Basic Research (B) of Grant-in-Aid for Scientific Research of Japanese Ministry of Education, Culture, Sports, Science and Technology
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献