Biomass waste utilisation in low-carbon products: harnessing a major potential resource

Author:

Tripathi Nimisha,Hills Colin D.,Singh Raj S.,Atkinson Christopher J.ORCID

Abstract

Abstract The increasing demand for food and other basic resources from a growing population has resulted in the intensification of agricultural and industrial activities. The wastes generated from agriculture are a burgeoning problem, as their disposal, utilisation and management practices are not efficient or universally applied. Particularly in developing countries, most biomass residues are left in the field to decompose or are burned in the open, resulting in significant environmental impacts. Similarly, with rapid global urbanisation and the rising demand for construction products, alternative sustainable energy sources and raw material supplies are required. Biomass wastes are an under-utilised source of material (for both energy and material generation), and to date, there has been little activity focussing on a ‘low-carbon’ route for their valorisation. Thus, the present paper attempts to address this by reviewing the global availability of biomass wastes and their potential for use as a feedstock for the manufacture of high-volume construction materials. Although targeted at practitioners in the field of sustainable biomass waste management, this work may also be of interest to those active in the field of carbon emission reductions. We summarise the potential of mitigating CO2 in a mineralisation step involving biomass residues, and the implications for CO2 capture and utilisation (CCU) to produce construction products from both solid and gaseous wastes. This work contributes to the development of sustainable value-added lower embodied carbon products from solid waste. The approach will offer reduced carbon emissions and lower pressure on natural resources (virgin stone, soil etc.).

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Reference114 articles.

1. UNEP (United Nations Environment Programme) Converting waste agricultural biomass into a resource. United Nations Environment Programme Division of Technology, Industry and Economics International Environmental Technology Centre, Osaka/Shiga, Japan. www.unep.org/ietc/Portals/136/Publications/Waste%20Management/WasteAgriculturalBiomassEST_Compendium.pdf (2015).

2. Chun, A. M. S. Ground Rules for Humanitarian Design (eds Chun, A. M. S. & Brisson, E.) (Wiley Publishers, London, 2015) ISBN 978-1-118-36159-7.

3. FAO. Global forest products facts and figures. Available at: http://www.fao.org/fileadmin/user_upload/newsroom/docs/2011%20GFP%20Facts%20and%20Figures.pdf (2011).

4. Schieber, A., Stintzing, F. C. & Carle, R. By-products of plant food processing as a source of functional compounds-Recent developments. Trends Food Sci. Technol. 12, 401–413 (2001).

5. Yevich, R. & Logan, J. An assessment of biofuel use and burning of agricultural waste in the developing world. Glob. Biogeochem. Cycles 17, 1095 (2003).

Cited by 360 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3