Feasibility and Accuracy of the Automated Software for Dynamic Quantification of Left Ventricular and Atrial Volumes and Function in a Large Unselected Population

Author:

Italiano GianpieroORCID,Tamborini GloriaORCID,Fusini LauraORCID,Mantegazza Valentina,Doldi Marco,Celeste Fabrizio,Gripari Paola,Muratori Manuela,Lang Roberto M.,Pepi MauroORCID

Abstract

We aimed to evaluate the feasibility and accuracy of machine learning-based automated dynamic quantification of left ventricular (LV) and left atrial (LA) volumes in an unselected population. We enrolled 600 unselected patients (12% in atrial fibrillation) clinically referred for transthoracic echocardiography (2DTTE), who also underwent 3D echocardiography (3DE) imaging. LV ejection fraction (EF), LV, and LA volumes were obtained from 2D images; 3D images were analyzed using dynamic heart model (DHM) software (Philips) resulting in LV and LA volume–time curves. A subgroup of 140 patients also underwent cardiac magnetic resonance (CMR) imaging. Average time of analysis, feasibility, and image quality were recorded, and results were compared between 2DTTE, DHM, and CMR. The use of DHM was feasible in 522/600 cases (87%). When feasible, the boundary position was considered accurate in 335/522 patients (64%), while major (n = 38) or minor (n = 149) border corrections were needed. The overall time required for DHM datasets was approximately 40 seconds. As expected, DHM LV volumes were larger than 2D ones (end-diastolic volume: 173 ± 64 vs. 142 ± 58 mL, respectively), while no differences were found for LV EF and LA volumes (EF: 55% ± 12 vs. 56% ± 14; LA volume 89 ± 36 vs. 89 ± 38 mL, respectively). The comparison between DHM and CMR values showed a high correlation for LV volumes (r = 0.70 and r = 0.82, p < 0.001 for end-diastolic and end-systolic volume, respectively) and an excellent correlation for EF (r = 0.82, p < 0.001) and LA volumes. The DHM software is feasible, accurate, and quick in a large series of unselected patients, including those with suboptimal 2D images or in atrial fibrillation.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3