Energy Conservation in a Livestock Building Combined with a Renewable Energy Heating System towards CO2 Emission Reduction: The Case Study of a Sheep Barn in North Greece

Author:

Lithourgidis Antonios A.1ORCID,Firfiris Vasileios K.1,Kalamaras Sotirios D.1ORCID,Tzenos Christos A.1,Brozos Christos N.2ORCID,Kotsopoulos Thomas A.1ORCID

Affiliation:

1. Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

2. Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str, GR-54627 Thessaloniki, Greece

Abstract

Cold stress in sheep is usually overlooked, even though the animals’ welfare and productivity are affected by low temperatures. The aim of this research was to find out if and to what extent the temperature inside a sheep barn could be maintained within the range of the thermoneutral zone during winter, primarily to increase feed conversion and to reduce GHG emissions. For this reason, an automation system was installed at a sheep barn in northern Greece, and heat losses from the building were calculated. The biogas potential of the sheep barn waste was examined in the laboratory via the BMP method. The results showed that the installation of an automation system together with a hypothetical biogas heating system could maintain the barn’s temperature in the range of a sheep’s thermoneutral zone during winter for the 94% of the scenarios examined if the total energy of the biogas was utilized, while heating energy that was instantly and continuously used succeeded in 48% of the investigated cases. The surplus of energy produced by biogas could potentially raise the water temperature that animals drink up to 2.9 °C. The absence of cold stress decreases the dry matter intake and the CH4 produced by ruminal fermentation. Moreover, lower GHG emissions are achieved as waste is treated through anaerobic digestion, which would likely be released into the environment if left untreated.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3