Multi-Object Detection Algorithm in Wind Turbine Nacelles Based on Improved YOLOX-Nano

Author:

Hu Chunsheng,Zhao Yong,Cheng Fangjuan,Li Zhiping

Abstract

With more and more wind turbines coming into operation, inspecting wind farms has become a challenging task. Currently, the inspection robot has been applied to inspect some essential parts of the wind turbine nacelle. The detection of multiple objects in the wind turbine nacelle is a prerequisite for the condition monitoring of some essential parts of the nacelle by the inspection robot. In this paper, we improve the original YOLOX-Nano model base on the short monitoring time of the inspected object by the inspection robot and the slow inference speed of the original YOLOX-Nano. The accuracy and inference speed of the improved YOLOX-Nano model are enhanced, and especially, the inference speed of the model is improved by 72.8%, and it performs better than other lightweight network models on embedded devices. The improved YOLOX-Nano greatly satisfies the need for a high-precision, low-latency algorithm for multi-object detection in wind turbine nacelle.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3