Defect Detection on a Wind Turbine Blade Based on Digital Image Processing

Author:

Deng Liwei,Guo Yangang,Chai Borong

Abstract

Wind power generation is a widely used power generation technology. Among these, the wind turbine blade is an important part of a wind turbine. If the wind turbine blade is damaged, it will cause serious consequences. The traditional methods of defect detection for wind turbine blades are mainly manual detection and acoustic nondestructive detection, which are unsafe and time-consuming, and have low accuracy. In order to detect the defects on wind turbine blades more safely, conveniently, and accurately, this paper studied a defect detection method for wind turbine blades based on digital image processing. Because the log-Gabor filter used needed to extract features through multiple filter templates, the number of output images was large. Firstly, this paper used the Lévy flight strategy to improve the PSO algorithm to create the LPSO algorithm. The improved LPSO algorithm could successfully solve the PSO algorithm’s problem of falling into the local optimal solution. Then, the LPSO algorithm and log-Gabor filter were used to generate an adaptive filter, which could directly output the optimal results in multiple feature extraction images. Finally, a classifier based on HOG + SVM was used to identify and classify the defect types. The method extracted and identified the scratch-type, crack-type, sand-hole-type, and spot-type defects, and the recognition rate was more than 92%.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference29 articles.

1. Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken Images

2. Discussion on wind turbine technology development trend;Wang;Technol. Mark.,2019

3. Wind Turbine Blades Inspection Techniques

4. Review of surface defect detection based on machine vision;Bo;J. Image Graph.,2017

5. Wind energy technology and current status: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3