Abstract
Responses of two types of single-crystal diamonds, prepared by chemical vapour deposition (CVD) and high pressure high temperature synthesis (HPHT) methods, respectively, to a nanosecond pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser were investigated and compared. It was found that due to the difference in the transmission rate and refractive index, the laser-induced surface/subsurface features of the two types of samples were distinctly different. For the CVD sample, destructive interference takes place on the upper surface, leading to direct ablation of smooth grooves with deposition of graphite. For the HPHT sample, however, laser-induced grooves were formed on the reverse side of the irradiation surface (namely, the lower surface) at certain laser fluences due to the constructive interference phenomenon of the laser and the high refractive index of the material. The reverse-side irradiation resulted in the formation of deep and sharp grooves with rough bottoms and insignificant deposition of graphite on the area surrounding the groove. The machining thresholds for the upper and lower surfaces of both types of diamonds were experimentally obtained and theoretically verified. The findings of this study provide important process criteria for laser machining of different kinds of diamonds. The reverse-side irradiation method enables efficient machining of deep grooves in diamonds using a lower power laser.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献