Scalable Distributed State Estimation in UTM Context

Author:

Cicala MarcoORCID,D’Amato EgidioORCID,Notaro Immacolata,Mattei MassimilianoORCID

Abstract

This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates. In the UTM context, this enables each vehicle to estimate both its own position and velocity, as well as those of the neighboring vehicles, using both on board measurements and information transmitted by neighboring vehicles. A numerical simulation in a simplified UTM scenario is presented, in order to illustrate the salient aspects of the proposed algorithm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Handbook of Unmanned Aerial Vehicles;Valavanis,2015

2. Demonstrating RPAS integration in the European aviation system;Tech. Rep.,2016

3. Aided Navigation: GPS with High Rate Sensors;Farrell,2008

4. A review of navigation systems (integration and algorithms);Hasan;Aust. J. Basic Appl. Sci.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-UAV Collaborative Absolute Vision Positioning and Navigation: A Survey and Discussion;Drones;2023-04-11

2. Decentralized Moving Horizon Estimation for a Fleet of UAVs;2022 International Conference on Unmanned Aircraft Systems (ICUAS);2022-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3