Abstract
In this paper, gamma attenuation has been utilised as a veritable tool for non-invasive estimation of the thickness of scale deposits. By simulating flow regimes at six volume percentages and seven scale thicknesses of a two phase-flow in a pipe, our study utilised a dual-energy gamma source with Ba-133 and Cs-137 radioisotopes, a steel pipe, and a 2.54 cm × 2.54 cm sodium iodide (NaI) photon detector to analyse three different flow regimes. We employed Fourier transform and frequency characteristics (specifically, the amplitudes of the first to fourth dominant frequencies) to transform the received signals to the frequency domain, and subsequently to extract the various features of the signal. These features were then used as inputs for the group method for data Hiding (GMDH) neural network framework used to predict the scale thickness inside the pipe. Due to the use of appropriate features, our proposed technique recorded an average root mean square error (RMSE) of 0.22, which is a very good error compared to the detection systems presented in previous studies. Moreover, this performance is indicative of the utility of our GMDH neural network extraction process and its potential applications in determining parameters such as type of flow regime, volume percentage, etc. in multiphase flows and across other areas of the oil and gas industry.
Funder
Ministry of Education and Science of the Republic of Poland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献