Using Ant Colony Optimization as a Method for Selecting Features to Improve the Accuracy of Measuring the Thickness of Scale in an Intelligent Control System

Author:

Mayet Abdulilah Mohammad1ORCID,Ijyas V. P. Thafasal1,Bhutto Javed Khan1ORCID,Guerrero John William Grimaldo2ORCID,Shukla Neeraj Kumar1ORCID,Eftekhari-Zadeh Ehsan3ORCID,Alhashim Hala H.4

Affiliation:

1. Electrical Engineering Department, King Khalid University, Abha 61411, Saudi Arabia

2. Department of Energy, Universidad de la Costa, Barranquilla 080001, Colombia

3. Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany

4. Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia

Abstract

The scaling of oil pipelines over time leads to issues including diminished flow rates, wasted energy, and decreased efficiency. To take appropriate action promptly and avoid the aforementioned issues, it is crucial to determine the precise value of the scale within the pipe. Non-invasive gamma attenuation systems are one of the most accurate detection methods. To accomplish this goal, the Monte Carlo N Particle (MCNP) algorithm was used to simulate a scale thickness measurement system, which included two sodium iodide detectors, a dual-energy gamma source (241 Am and 133 Ba radioisotopes), and a test pipe. Water, gas, and oil were all used to mimic a three-phase flow in the test pipe, with the volume percentages ranging from 10% to 80%. Moreover, a scale ranging in thickness from 0 to 3 cm was inserted into the pipe, gamma rays were shone on the pipe, and on the opposite side of the pipe, photon intensity was measured by detectors. There were 252 simulations run. Fifteen time and frequency characteristics were derived from the signals collected by the detectors. The ant colony optimisation (ACO)-based approach is used to pick the ideal inputs from among the extracted characteristics for determining the thickness of the scale within the pipe. This technique led to the introduction of thirteen features that represented the ideal combination. The features introduced by ACO were introduced as inputs to a multi-layer perceptron (MLP) neural network to predict the scale thickness inside the oil pipe in centimetres. The maximum error found in calculating scale thickness was 0.017 as RMSE, which is a minor error compared to earlier studies. The accuracy of the present study in detecting scale thickness has been greatly improved by using the ACO to choose the optimal features.

Funder

Deanship of Scientific Research at King Khalid University

German Research Foundation Projekt-Nr.

Open Access Publication Fund of the Thueringer Universitaets- und Landesbibliothek Jena

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3