Spatio-Temporal Characteristics of Ice–Snow Freezing and Its Impact on Subtropical Forest Fires in China

Author:

Wang Xuecheng12ORCID,Gao Xing2,Wu Yuming2ORCID,Jiang Hou2ORCID,Wang Peng3

Affiliation:

1. School of Geography and Planning, Nanning Normal University, Nanning 530001, China

2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. School of Natural Resources and Surveying, Nanning Normal University, Nanning 530001, China

Abstract

Ice–snow freezing may disrupt the growth condition and structure of forest vegetation, increasing combustible loads and thus triggering forest fires. China’s subtropical regions are rich in forest resources, but are often disturbed by ice–snow freezing, especially due to climate change. Clarifying the responsive areas and times of forest fires to ice-snow freezing in this region is of vital importance for local forest fire management. In this study, meteorological data from 2001 to 2019 were used to extract the precipitation and its duration during the freezing period in order to analyze the freezing condition of forest vegetation in subtropical China. To improve the accuracy of identifying forest fires, we extracted forest fire information year-by-year and month-by-month based on the moderate resolution imaging spectroradiometer (MODIS) active fire data (MOD14A2) using the enhanced vegetation index (EVI), and analyzed the forest fire clustering characteristics in the region using the Moran’s Index. Then, correlation analysis between forest fires and freezing precipitation was utilized to explore the responsive areas and periods of forest fires caused by ice–snow freezing. Our analysis shows the following: (1) during the period of 2001–2019, the ice–snow freezing of forest vegetation was more serious in Hunan, Jiangxi, Hubei, and Anhui provinces; (2) forest fires in subtropical China have shown a significant downward trend since 2008 and their degree of clustering has been reduced from 0.44 to 0.29; (3) forest fires in Hunan, Jiangxi, and Fujian provinces are greatly affected by ice–snow freezing, and their correlation coefficients are as high as 0.25, 0.25, and 0.32, respectively; and (4) heavy ice–snow freezing can increase forest combustibles and affect forest fire behavior in February and March. This research is valuable for forest fire management in subtropical China and could also provide a reference for other regions.

Funder

Guangxi Science and Technology Base and Talent Specialization

State Key Laboratory of Resources and Environmental Information System

Strategic Priority Research Program (Class A) of the Chinese Academy of Sciences

Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3