Improved Medium Baseline RTK Positioning Performance Based on BDS/Galileo/GPS Triple-Frequency-Only Observations

Author:

Dang Xifeng1,Yin Xiao123ORCID,Zhang Yize4,Gao Chengfa3,Wu Jincheng1,Liu Yongqiang1

Affiliation:

1. China Railway First Group Urban Rail Transit Engineering Co., Ltd., Wuxi 214000, China

2. College of Environment and Resource Science, Zhejiang A&F University, Hangzhou 311300, China

3. School of Transportation, Southeast University, Nanjing 210096, China

4. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Abstract

With the global service of the BeiDou Navigation Satellite System (BDS), the Galileo Navigation Satellite System (Galileo), and the modernization of the Global Positioning System (GPS), achieving high-precision positioning through triple-frequency-only observations in medium baseline real-time kinematics (RTK) is anticipated. This study investigates the impacts of double-difference (DD) troposphere delay and ionosphere delay on ambiguity resolution (AR) based on six medium baselines at a latitude of 30°. Additionally, it evaluates positioning accuracy, fixing rate, convergence time, and computational time using triple-frequency-only (B1I/B2a/B3I, E1/E5a/E5b, L1/L2/L5) data, comparing these results to those obtained from dual-frequency (B1I/B2a, E1/E5a, L1/L2) and combined dual-frequency and triple-frequency data. The experimental findings suggest that, for geometry-based wide-lane (WL) AR, the DD troposphere delay and ionosphere delay can be disregarded. However, they cannot be overlooked when aiming to resolve the raw ambiguity. Triple-frequency-only RTK exhibits comparable positioning accuracy to dual-frequency RTK, with its primary advantage lying in faster convergence. The probability of achieving convergence within 180 s is approximately 8.0% higher for triple-frequency-only RTK compared to dual-frequency RTK. In terms of computational time, the use of triple-frequency-only data reduces the required time by 8.26 s compared to the approach that simultaneously employs both dual-frequency and triple-frequency data, resulting in a computational time reduction of approximately 20%. Therefore, when conducting medium baseline RTK positioning, it is recommended to adopt the ambiguity resolution method proposed in this paper based on triple-frequency-only observations.

Funder

China Railway First Group

Zhejiang A&F University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3