Measurement Signal Quality Assessment on All Available and New Signals of Multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with Real Data

Author:

Quan Yiming,Lau Lawrence,Roberts Gethin W.,Meng Xiaolin

Abstract

Global Navigation Satellite Systems (GNSS) Carrier Phase (CP)-based high-precision positioning techniques have been widely used in geodesy, attitude determination, engineering survey and agricultural applications. With the modernisation of GNSS, multi-constellation and multi-frequency data processing is one of the foci of current GNSS research. The GNSS development authorities have better designs for the new signals, which are aimed for fast acquisition for civil users, less susceptible to interference and multipath, and having lower measurement noise. However, how good are the new signals in practice? The aim of this paper is to provide an early assessment of the newly available signals as well as assessment of the other currently available signals. The signal quality of the multi-GNSS (GPS, GLONASS, Galileo, BDS and QZSS) is assessed by looking at their zero-baseline Double Difference (DD) CP residuals. The impacts of multi-GNSS multi-frequency signals on single-epoch positioning are investigated in terms of accuracy, precision and fixed solution availability with known short baselines.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference21 articles.

1. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites

2. Ong R.B. , Petovello M.G. , and Lachapelle G. (2009). Assessment of GPS/GLONASS RTK Under Various Operational Conditions, Proceedings of ION GNSS 2009, the 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, Georgia, September 22–25, 2009, 3297–3308.

3. TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data

4. Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals

5. Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3