A Modified Version of the Direct Sampling Method for Filling Gaps in Landsat 7 and Sentinel 2 Satellite Imagery in the Coastal Area of Rhone River

Author:

Farhat Lokmen1,Manakos Ioannis2ORCID,Sylaios Georgios3ORCID,Kalaitzidis Chariton1ORCID

Affiliation:

1. Department of Geoinformation in Environmental Management, Mediterranean Agronomic Institute of Chania (MAICh), Alsyllio Agrokepiou, Makedonias 1, 73100 Chania, Greece

2. Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Harilaou-Thermi Road, 57001 Thessaloniki, Greece

3. Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

Earth Observation (EO) data, such as Landsat 7 (L7) and Sentinel 2 (S2) imagery, are often used to monitor the state of natural resources all over the world. However, this type of data tends to suffer from high cloud cover percentages during rainfall/snow seasons. This has led researchers to focus on developing algorithms for filling gaps in optical satellite imagery. The present work proposes two modifications to an existing gap-filling approach known as the Direct Sampling (DS) method. These modifications refer to ensuring the algorithm starts filling unknown pixels (UPs) that have a specified minimum number of known neighbors (Nx) and to reducing the search area to pixels that share similar reflectance as the Nx of the selected UP. Experiments were performed on images acquired from coastal water bodies in France. The validation of the modified gap-filling approach was performed by imposing artificial gaps on originally gap-free images and comparing the simulated images with the real ones. Results indicate that satisfactory performance can be achieved for most spectral bands. Moreover, it appears that the bi-layer (BL) version of the algorithm tends to outperform the uni-layer (UL) version in terms of overall accuracy. For instance, in the case of B04 of an L7 image with a cloud percentage of 27.26%, accuracy values for UL and BL simulations are, respectively, 64.05 and 79.61%. Furthermore, it has been confirmed that the introduced modifications have indeed helped in improving the overall accuracy and in reducing the processing time. As a matter of fact, the implementation of a conditional filling path (minNx = 4) and a targeted search (n2 = 200) when filling cloud gaps in L7 imagery has contributed to an average increase in accuracy of around 35.06% and an average gain in processing time by around 78.18%, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3