An Improved Gap-Filling Method for Reconstructing Dense Time-Series Images from LANDSAT 7 SLC-Off Data

Author:

Li Yue1ORCID,Liu Qiang2ORCID,Chen Shuang3,Zhang Xiaotong1

Affiliation:

1. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. Peng Cheng Laboratory, Shenzhen 518000, China

3. Department of Geography, The University of Hong Kong, Hong Kong 999077, China

Abstract

Over recent decades, Landsat satellite data has evolved into a highly valuable resource across diverse fields. Long-term satellite data records with integrity and consistency, such as the Landsat series, provide indispensable data for many applications. However, the malfunction of the Scan Line Corrector (SLC) on the Landsat 7 satellite in 2003 resulted in stripping in subsequent images, compromising the temporal consistency and data quality of Landsat time-series data. While various methods have been proposed to improve the quality of Landsat 7 SLC-off data, existing gap-filling methods fail to enhance the temporal resolution of reconstructed images, and spatiotemporal fusion methods encounter challenges in managing large-scale datasets. Therefore, we propose a method for reconstructing dense time series from SLC-off data. This method utilizes the Neighborhood Similar Pixel Interpolator to fill in missing values and leverages the time-series information to reconstruct high-resolution images. Taking the blue band as an example, the surface reflectance verification results show that the Mean Absolute Error (MAE) and BIAS reach minimum values of 0.0069 and 0.0014, respectively, with the Correlation Coefficient (CC) and Structural Similarity Index Metric (SSIM) reaching 0.93 and 0.94. The proposed method exhibits advantages in repairing SLC-off data and reconstructing dense time-series data, enabling enhanced remote sensing applications and reliable Earth’s surface reflectance data reconstruction.

Funder

National Natural Science Foundation of China Major Program

National Natural Science Foundation of China

Publisher

MDPI AG

Reference58 articles.

1. Current status of Landsat program, science, and applications;Wulder;Remote Sens. Environ.,2019

2. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States;Roy;Remote Sens. Environ.,2010

3. Landsat: Building a strong future;Loveland;Remote Sens. Environ.,2012

4. Opening the archive: How free data has enabled the science and monitoring promise of Landsat;Wulder;Remote Sens. Environ.,2012

5. Suliman, S.I. (2016). Locally Linear Manifold Model for Gap-Filling Algorithms of Hyperspectral Imagery: Proposed Algorithms and a Comparative Study. [Master’s Thesis, Michigan State University].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3