Experimental Investigation on Fragmentation Identification in Loose Slope Landslides by Infrared Emissivity Variability Features

Author:

Liu Xiangxin1ORCID,Wu Lixin2ORCID,Mao Wenfei2,Sun Licheng2

Affiliation:

1. School of Civil and Surveying and Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Abstract

Infrared radiation (IR) features that are influenced by infrared emissivity ε and physical temperature Td have been successfully applied to the early-warning of landslides. Although the infrared emissivity of a rock is a key parameter to determine its thermal radiation properties, the effect of particle size on the infrared emissivity of rock fragments is unknown. So in this paper, granite, marble, and sandstone were used as examples to conduct infrared imaging experiments on rock fragments. Their equivalent emissivity was used to interpret the detected infrared emission, including that from indoor backgrounds. In addition, the characteristics of changes in equivalent emissivity were discussed with reference to changes in observation direction and zenith angle. Then, a computation model of equivalent emissivity based on multiple observation directions and zenith angles was built to reveal the change in equivalent emissivity with particle sizes. The result indicates that the indoor background radiation has a predominant direction just above the rock fragments. The maximum deviation of infrared brightness temperature (IBT) was 0.260 K, and the maximum deviation of equivalent emissivity among different observation directions and zenith angles was 0.0065. After eliminating the influence of directional and angle effects with the operation of normalization, the general law of equivalent emissivity for all rock fragments that change with particle size is consistent. The maximum equivalent emissivity occurs at particle size 5 mm in the condition of particle size larger than 1 mm, while the equivalent emissivity changes inversely with particle size in the condition of particle size smaller than 1 mm. Above all, this study contributes new cognitions to Remote Sensing Rock Mechanics, and provides valuable evidence for better thermal infrared remote sensing monitoring on loose slope landslides.

Funder

State Key Program of the National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3