Individual Rubber Tree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning

Author:

Wang ,Chen ,Cao ,An ,Chen ,Xue ,Yun

Abstract

Rubber trees in southern China are often impacted by natural disturbances that can result in a tilted tree body. Accurate crown segmentation for individual rubber trees from scanned point clouds is an essential prerequisite for accurate tree parameter retrieval. In this paper, three plots of different rubber tree clones, PR107, CATAS 7-20-59, and CATAS 8-7-9, were taken as the study subjects. Through data collection using ground-based mobile light detection and ranging (LiDAR), a voxelisation method based on the scanned tree trunk data was proposed, and deep images (i.e., images normally used for deep learning) were generated through frontal and lateral projection transform of point clouds in each voxel with a length of 8 m and a width of 3 m. These images provided the training and testing samples for the faster region-based convolutional neural network (Faster R-CNN) of deep learning. Consequently, the Faster R-CNN combined with the generated training samples comprising 802 deep images with pre-marked trunk locations was trained to automatically recognize the trunk locations in the testing samples, which comprised 359 deep images. Finally, the point clouds for the lower parts of each trunk were extracted through back-projection transform from the recognized trunk locations in the testing samples and used as the seed points for the region’s growing algorithm to accomplish individual rubber tree crown segmentation. Compared with the visual inspection results, the recognition rate of our method reached 100% for the deep images of the testing samples when the images contained one or two trunks or the trunk information was slightly occluded by leaves. For the complicated cases, i.e., multiple trunks or overlapping trunks in one deep image or a trunk appearing in two adjacent deep images, the recognition accuracy of our method was greater than 90%. Our work represents a new method that combines a deep learning framework with point cloud processing for individual rubber tree crown segmentation based on ground-based mobile LiDAR scanned data.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3