A 3D Point Cloud Filtering Method for Leaves Based on Manifold Distance and Normal Estimation

Author:

Hu Chunhua,Pan ZhouORCID,Li Pingping

Abstract

Leaves are used extensively as an indicator in research on tree growth. Leaf area, as one of the most important index in leaf morphology, is also a comprehensive growth index for evaluating the effects of environmental factors. When scanning tree surfaces using a 3D laser scanner, the scanned point cloud data usually contain many outliers and noise. These outliers can be clusters or sparse points, whereas the noise is usually non-isolated but exhibits different attributes from valid points. In this study, a 3D point cloud filtering method for leaves based on manifold distance and normal estimation is proposed. First, leaf was extracted from the tree point cloud and initial clustering was performed as the preprocessing step. Second, outlier clusters filtering and outlier points filtering were successively performed using a manifold distance and truncation method. Third, noise points in each cluster were filtered based on the local surface normal estimation. The 3D reconstruction results of leaves after applying the proposed filtering method prove that this method outperforms other classic filtering methods. Comparisons of leaf areas with real values and area assessments of the mean absolute error (MAE) and mean absolute error percent (MAE%) for leaves in different levels were also conducted. The root mean square error (RMSE) for leaf area was 2.49 cm2. The MAE values for small leaves, medium leaves and large leaves were 0.92 cm2, 1.05 cm2 and 3.39 cm2, respectively, with corresponding MAE% values of 10.63, 4.83 and 3.8. These results demonstrate that the method proposed can be used to filter outliers and noise for 3D point clouds of leaves and improve 3D leaf visualization authenticity and leaf area measurement accuracy.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3