Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether

Author:

Maor Itzhak I.1,Heyte Svetlana2ORCID,Elishav Oren1,Mann-Lahav Meirav1,Thuriot-Roukos Joelle2,Paul Sébastien2ORCID,Grader Gideon S.13ORCID

Affiliation:

1. The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel

2. Université de Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université d’Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-59000 Lille, France

3. The Nancy & Stephan Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa 3200003, Israel

Abstract

The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO2) and green hydrogen (H2) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to their low cost compared with their noble metal analogs. Nevertheless, improving the activity and selectivity of these Cu catalysts for these products is highly desirable. In the present study, a new architecture of Cu- and Cu/Zn-based catalysts supported on electrospun alumina nanofibers were synthesized. The catalysts were tested under various reaction conditions using high-throughput equipment to highlight the role of the hierarchical fibrous structure on the reaction activity and selectivity. The Cu or Cu/ZnO formed a unique structure of nanosheets, covering the alumina fiber surface. This exceptional morphology provides a large surface area, up to ~300 m2/g, accessible for reaction. Maximal production of methanol (~1106 gmethanolKgCu−1∙h−1) and DME (760 gDMEKgCu−1∙h−1) were obtained for catalysts containing 7% wt. Cu/Zn with a weight ratio of 2.3 Zn to Cu (at 300 °C, 50 bar). The promising results in CO2 hydrogenation to methanol and DME obtained here point out the significant advantage of nanofiber-based catalysts in heterogeneous catalysis.

Funder

Nancy & Stephan Grand Technion Energy Program

U.S-Israel Energy Center

Israeli Ministry of Energy as part of the scholarship’s program

French National Research Agency

Chevreul Institute

ERDF

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference71 articles.

1. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis;Jiang;Chem. Rev.,2020

2. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation;Appel;Chem. Rev.,2013

3. Lindsey, R., and Dlugokencky, E. (2023, January 19). Climate Change: Atmospheric Carbon Dioxide|NOAA Climate.Gov, Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.

4. Hydrogenation of CO2 to Value-Added Products—A Review and Potential Future Developments;Saeidi;Biochem. Pharmacol.,2014

5. Selective Hydrogenation of CO2 and CO to Useful Light Olefins over Octahedral Molecular Sieve Manganese Oxide Supported Iron Catalysts;Hu;Appl. Catal. B Environ.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3