Mesoporous Cobalt Oxide (CoOx) Nanowires with Different Aspect Ratios for High Performance Hybrid Supercapacitors

Author:

Ji Haomin1,Ma Yifei1ORCID,Cai Zhuo1,Yun Micun1,Han Jiemin1ORCID,Tong Zhaomin1,Wang Mei1ORCID,Suhr Jonghwan2,Xiao Liantuan1,Jia Suotang1,Chen Xuyuan13ORCID

Affiliation:

1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

2. Department of Polymer Science and Engineering, School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

3. Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Microsystems, University of Southeast Norway, N-3184 Borre, Norway

Abstract

Cobalt oxide (CoOx) nanowires have been broadly explored as advanced pseudocapacitive materials owing to their impressive theoretical gravimetric capacity. However, the traditional method of compositing with conductive nanoparticles to improve their poor conductivity will unpredictably lead to a decrease in actual capacity. The amelioration of the aspect ratio of the CoOx nanowires may affect the pathway of electron conduction and ion diffusion, thereby improving the electrochemical performances. Here, CoOx nanowires with various aspect ratios were synthesized by controlling hydrothermal temperature, and the CoOx electrodes achieve a high gravimetric specific capacity (1424.8 C g−1) and rate performance (38% retention at 100 A g−1 compared to 1 A g−1). Hybrid supercapacitors (HSCs) based on activated carbon anode reach an exceptional specific energy of 61.8 Wh kg−1 and excellent cyclic performance (92.72% retention, 5000 cycles at 5 A g−1). The CoOx nanowires exhibit great promise as a favorable cathode material in the field of high-performance supercapacitors (SCs).

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Research and Development Program of Shanxi Province for International Cooperation

Shanxi Scholarship Council of China

111 Project

Fund for Shanxi “1331 Project”

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3