GAGA Regulates Border Cell Migration in Drosophila

Author:

Ogienko Anna A.,Yarinich Lyubov A.,Fedorova Elena V.,Dorogova Natalya V.ORCID,Bayborodin Sergey I.,Baricheva Elina M.,Pindyurin Alexey V.ORCID

Abstract

Collective cell migration is a complex process that happens during normal development of many multicellular organisms, as well as during oncological transformations. In Drosophila oogenesis, a small set of follicle cells originally located at the anterior tip of each egg chamber become motile and migrate as a cluster through nurse cells toward the oocyte. These specialized cells are referred to as border cells (BCs) and provide a simple and convenient model system to study collective cell migration. The process is known to be complexly regulated at different levels and the product of the slow border cells (slbo) gene, the C/EBP transcription factor, is one of the key elements in this process. However, little is known about the regulation of slbo expression. On the other hand, the ubiquitously expressed transcription factor GAGA, which is encoded by the Trithorax-like (Trl) gene was previously demonstrated to be important for Drosophila oogenesis. Here, we found that Trl mutations cause substantial defects in BC migration. Partially, these defects are explained by the reduced level of slbo expression in BCs. Additionally, a strong genetic interaction between Trl and slbo mutants, along with the presence of putative GAGA binding sites within the slbo promoter and enhancer, suggests the direct regulation of this gene by GAGA. This idea is supported by the reduction in the slbo-Gal4-driven GFP expression within BC clusters in Trl mutant background. However, the inability of slbo overexpression to compensate defects in BC migration caused by Trl mutations suggests that there are other GAGA target genes contributing to this process. Taken together, the results define GAGA as another important regulator of BC migration in Drosophila oogenesis.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3