Author:
Guo Xiaoran,Dai Wei,Montell Denise
Abstract
AbstractCollective cell migration is critical for normal development, wound healing, and in tumor progression and metastasis. Border cells in the Drosophila ovary provide a genetically tractable model to identify molecular mechanisms that drive this important cell behavior. In an unbiased screen for defects in border cell migration in mosaic clones, we identified a mutation in thecatsupgene. Catsup, the Drosophila ortholog of Zip7, is a large, multifunctional, transmembrane protein of the endoplasmic reticulum (ER), which has been reported to negatively regulate catecholamine biosynthesis, to regulate Notch signaling, to function as a zinc transporter, and to limit ER stress. Here we report thatcatsupknockdown caused ER stress in border cells and that ectopic induction of ER stress was sufficient to block migration. Notch and EGFR trafficking were also disrupted. Wild type Catsup rescued the migration defect but point mutations known to disrupt the zinc ion transport of Zip7 did not. We conclude that migrating cells are particularly susceptible to defects in zinc transport and ER homeostasis.
Publisher
Cold Spring Harbor Laboratory