Reduced Proteasome Activity and Enhanced Autophagy in Blood Cells of Psoriatic Patients

Author:

Karabowicz Piotr,Wroński Adam,Ostrowska Halina,Waeg Georg,Zarkovic Neven,Skrzydlewska ElżbietaORCID

Abstract

Psoriasis is a skin disease that is accompanied by oxidative stress resulting in modification of cell components, including proteins. Therefore, we investigated the relationship between the intensity of oxidative stress and the expression and activity of the proteasomal system as well as autophagy, responsible for the degradation of oxidatively modified proteins in the blood cells of patients with psoriasis. Our results showed that the caspase-like, trypsin-like, and chymotrypsin-like activity of the 20S proteasome in lymphocytes, erythrocytes, and granulocytes was lower, while the expression of constitutive proteasome and immunoproteasome subunits in lymphocytes was increased cells of psoriatic patients compared to healthy subjects. Conversely, the expression of constitutive subunits in erythrocytes, and both constitutive and immunoproteasomal subunits in granulocytes were reduced. However, a significant increase in the autophagy flux (assessed using LC3BII/LC3BI ratio) independent of the AKT pathway was observed. The levels of 4-HNE, 4-HNE-protein adducts, and proteins carbonyl groups were significantly higher in the blood cells of psoriatic patients. The decreased activity of the 20S proteasome together with the increased autophagy and the significantly increased level of proteins carbonyl groups and 4-HNE-protein adducts indicate a proteostatic imbalance in the blood cells of patients with psoriasis.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3