Corrosion Behavior of Cobalt Oxide and Lithium Carbonate on Mullite–Cordierite Saggar Used for Lithium Battery Cathode Material Sintering

Author:

Sun Zhenhua,Li Shaopeng,Li Huiquan,Liu Mingkun,Li Zhanbing,Liu Xianjie,Liu Mingyong,Liu Qiyun,Huang Zhaohui

Abstract

Mullite–cordierite ceramic saggar is a necessary consumable material used in the synthesis process of LiCoO2 that is easily eroded during application. In our study, we systematically investigated the characteristics and surface corrosion behavior of waste saggar samples. We divided the cross sections of waste saggar into the attached layer, hardened layer, permeability layer, and matrix layer. Then, we examined the high-temperature solid-state reactions between saggar powder and lithium carbonate or cobalt oxide to identify erosion reactants correlating with an increase in the number of recycled saggars. The results of time-of-flight secondary ion mass spectrometric analysis (TOF-SIMS) prove that the maximum erosion penetration of lithium can reach 2 mm. However, our morphology and elemental distribution analysis results show that the erosion penetration of cobalt was only 200 μm. When enough lithium carbonate reacted, lithium aluminate and lithium silicate were the main phases. Our X-ray computed tomography (X-ray CT) analysis results show that the change in phase volume before and after the reaction, including the generation of oxygen and carbon dioxide gas, led to the internal crack expansion of the material–saggar interface. Our results can contribute to improving saggar and upgrading waste saggar utilization technology.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3