Design of a Panoramic Scanning Device Based on a Piezoelectric Ceramic Stack Actuator and Friction Transmission

Author:

Dai Minpeng,Ding Hao,Huang Chenwei,Zhu Yi,Wang Ming

Abstract

In view of the complex structure and inaccurate positioning capabilities of the existing panoramic scanning system, a panoramic scanning device based on a piezoelectric ceramic stack actuator and friction transmission was designed. In our model, the output displacement of the piezoelectric ceramics is amplified by a bridge-type flexure hinge and applied to a shaft by friction to achieve panoramic scanning imaging. The mathematical model of the device was established, and the working characteristics were analyzed. The analysis demonstrated that the linear displacement increment of the shaft is a superposition. A modality simulation was performed, and the simulation results show that the designed device works normally at a frequency of 511.5 Hz. The test results indicated that the displacement of the actuator can reach 6 μm at an input voltage of 100 V. Moreover, the laser scanning results showed that the designed device can perform panoramic scanning imaging, which meets the requirements for use on the high-speed imaging system.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference23 articles.

1. Panoramic imaging—A review;Duke;Comput. Graph.,2003

2. Long Integral Time Continuous Panorama Scanning Imaging Based on Bilateral Control with Image Motion Compensation

3. Application of a Vision-Based Single Target on Robot Positioning System

4. A Visualization Progress Management Approach of Bridge Construction Based on Mixed Panoramic and Oblique Photogrammetry;Zhang;Proceedings of the 2018 26th International Conference on Geoinformatics,2018

5. Model reference control of a fast steering mirror of a pointing, acquisition and tracking system for laser communications;Skormin;Proceedings of the Aerospace & Electronics Conference,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3