Review on the Nonlinear Modeling of Hysteresis in Piezoelectric Ceramic Actuators

Author:

Dai Yingli12,Li Dequan1,Wang Dong1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Piezoelectric ceramic actuators have the advantages of fast response speed and high positioning accuracy and are widely used in micro-machinery, aerospace, precision machining machinery, and other precision positioning fields. However, hysteretic nonlinearity has a great influence on the positioning accuracy of piezoelectric ceramic actuators, so it is necessary to establish a hysteretic model to solve this problem. In this paper, the principles of the Preisach model, the Prandtl Ishilinskii (PI) model, the Maxwell model, the Duhem model, the Bouc–Wen model, and the Hammerstein model and their application and development in piezoelectric hysteresis modeling are described in detail. At the same time, the classical model, the asymmetric model and the rate-dependent model of these models are described in detail, and the application of the inverse model corresponding to these models in the feedforward compensation is explained in detail. At the end of the paper, the methods of inverse model acquisition and control frequency of these models are compared. In addition, the future research trend of the hysteresis model is also prospected. The ideas and suggestions highlighted in this paper will guide the development of piezoelectric hysteresis models.

Funder

Natural Science Foundation of Jilin Province

National Natural Science Foundation of China

civil aerospace pre-research project of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference135 articles.

1. Vives, A.A. (2008). Piezoelectric Transducers and Applications, Springer.

2. Kaltenbacher, M. (2007). Numerical Simulation of Mechatronic Sensors and Actuators, Springer.

3. Jaffe, B., Cook, W.R., and Jaffe, H. (1971). Piezoelectric Ceramics, Academic Press.

4. Sliding mode control of hysteresis of piezoceramic actuator based on inverse Preisach compensation;Lai;Opt. Precis. Eng.,2011

5. Uchino, K. (2016). Antiferroelectric Shape Memory Ceramics. Actuators, 5.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3